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A strikingly diverse array of polycyclic alkaloids are found in 
club moss (genus Lycopodium), and these structures have long 
served to stimulate innovations in organic synthesis.1,2 Some 
years ago investigations of Lycopodium paniculatum and Ly­
copodium magellanicum revealed the presence of three new 
alkaloids having a unique tetracyclic skeleton: magellanine (1), 
magellaninone (2), and lycopaniculatine (paniculatine) (3).3'4 

The structures of 2 and 3 were secured by X-ray crystallography,3 

while absolute configurations were assigned by optical methods.4 

In this communication we report the first total syntheses of 
Lycopodium alkaloids having the magellanane skeleton.5-7 These 
total syntheses highlight the power of pinacol-terminated cationic 
cyclizations for assembling angularly-fused polycyclics.6c8 

Me Me Me 

magellanine (1) magellaninone (2) paniculatine (3) 

The angularly-fused carbotetracycle 9 was envisaged as the 
immediate precursor of the magellanane skeleton (Scheme I). 
The heart of our plan was the formation of this late intermediate 
by Prins-pinacol rearrangement of the dienyl acetal 7. Central 
to the design of this strategy was the expectation that the desired 
stereochemical outcome would result if Prins cyclization took 
place from the convex face of the cis-fused bicyclooctadiene 
fragment as illustrated in cyclization conformer 8.6^8 The readily 
available enantiopure (1 R,5S)-bicyclo [3.2.0] heptenone 49 would 
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Scheme I 

serve as the common precursor of 5 and 6, the direct progenitors 
of the cyclization substrate 7. 

The ci's-bicyclo[3.3.0]octadienyl iodide 12 was prepared from 
4 as summarized in Scheme II. Treatment of (+)-4 with 
[bis(methylthio)methyl]lithium, followed by reaction of the 
resulting alcohol with Cu(OTf)2-C6H6, as described by Cohen,10 

produced the ring-expanded a-sulfenyl ketone 10 in 70% yield 
and>10;l regioselectivity.1112 Themethylthiosubstituentin 10 
was subsequently exploited to introduce selectively the required 
second unsaturation in the bicyclo[3.3.0]octane fragment. Se­
quential treatment of 10 with Li-NH3, Me3SiCl, MeLi, and 
JV-phenyltriflamide'3 provided vinyl triflate 11 in 49% yield. This 
intermediate was then treated in turn with Pd(Ph3P)4 and 
hexamethylditin14 and then TY-iodosuccinimide'5 to afford iodide 
12 in good yield. This overall sequence allowed vinyl iodide 12 
to be prepared in enantiopure fashion in 27% overall yield from 
(+)-4. 

Addition of the vinyllithium reagent 6 derived from 12 to the 
(S)-cyclopentanone 5"_i7 was plagued by the propensity of 
cyclopentanone 5 to enolize. Enolization was minimized when 
this addition was carried out in Et2O at -110 0C, conditions that 
afforded diol 13 and its stereoisomer (ds = 8:1) in 71 % yield after 
desilylation. Conversion of this mixture to the bis(triethylsilyl) 
ethers followed by selective Swern oxidation of the primary silyl 
ethers1718 provided aldehydes 14, which were converted to the 
dimethyl acetals 15 (an 8:1 mixture of stereoisomers, 72% overall 
yield from 13) by treatment with trimethyl orthoformate and 
pyridinium /?-toluenesulfonate in CH2Cl2." The critical rear­
rangement of 15 was effected by exposure to this intermediate 
to 1.1 equiv of SnCl4 in CH2Cl2 (-78 — -20 0C) to give the 
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"Reaction conditions: (a) LiCH(SMe)2, THF, 0 0C; Cu(OTf)2-
PhH, (1'-Pr)2NEt, PhH, 50 0C. (b) Li, NH3-THF, -40 0C; TMSCl, 
THF; MeLi, THF, -78 — 0 0C; PhN(TQ2, -78 — 23 0C. (c) 
(Me3Sn)2, Pd(Ph3P)4, LiCl, THF, 60 0C; AModosuccinimide, THF, 0 
0C. (d) Et3SiCl, imidazole, DMAP, DMF, 50 0C; Swern oxidation, 
(e) (MeO)3CH, PPTS, CH2Cl2, 23 0C. (0 1.1 equiv OfSnCl4, CH2-
Cl,, -78 — -23 "C. (g) OsO4 (cat.), NaIO4, dioxane-H20, 23 0C; 
Ph,CHNH3Cl, NaBH3CN, /-PrOH, 23 0C. (h) Cl3SiMe, NaI, 
MeCN, 80 0C; TBSCl, imidazole, DMF, 23 0C. (i) H2, Pd(OH)2, 
EtOAc, 23 0C; (BOC),0, Et3N, DMAP, MeCN, 23 0C. (j) LDA, 
Me3SiCl, THF, -78 0C; Pd(OAc)2, MeCN, 80 0C. (k) LiMe2Cu, 
TMEDA, Me3SiCl, -78 — 0 0C; Pd(OAc)2, MeCN, 80 0C; CF3CO2-
H, 23 0 C, concentrate; HCHO, NaBH3CN, MeCN, 23 0C; HF, 
CH3CN. (1) Jones oxidation, 23 0C. 

with 5-15% of the corresponding C(5) alcohols.20 This pivotal 
conversion establishes five of the six stereocenters of magellanine 
with complete stereocontrol. 

Although the ether epimers 16 and 17 could be resolved on 
silica gel, for convenience we carried this mixture forward to the 

(20) The 8:1 mixture of diastereomeric acetals was used in the rearrange­
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final stage of the synthesis, at which time the epimers were diverted 
to different natural product targets. Oxidative cleavage21 of the 
cyclopentane ring followed by double reductive amination2223 

furnished the azatetracycles 18 in 60% overall yield from the 
mixture of epimers 16and 17. Adjustment of the ether protecting 
group24 to give 19 followed by cleavage of the benzhydryl group25 

and N-carbamoylation afforded 20 in 67% overall yield from 18. 
The A-ring functionality was then developed in a conventional 
fashion. Dehydrogenation26 provided 21, which was treated with 
LiMe2Cu-Me3SiCl and Pd(OAc)2

26 to afford the corresponding 
/3-methyl enone. This intermediate was then exposed to CF3CO2H 
to cleave the BOC protecting group, the resulting secondary amine 
was reductively methylated, and the silyl protecting group was 
removed with HF in acetonitrile. Resolution on basic alumina 
gave (-)-magellanine (1), mp 162-164 0C, and C(5)-epimagel-
lanine 22 in 50% and 18% yields, respectively. Epimagellanine 
22 was then oxidized with Jones reagent to provide (+)-
magellaninone (2) in 85% yield. Spectral data for magellanine 
and magellaninone closely matched literature data.3M27 Since 
samples of the natural isolates were not available, the structure 
of 1 was confirmed by single-crystal X-ray analysis of its 
methiodide derivative. 

In summary, the first total syntheses of Lycopodium alkaloids 
of the magellanane class have been accomplished. The enan-
tioselective total syntheses of magellanine (1) and magellaninone 
(2) are fully stereocontrolled and proceed in 25-26 steps from 
the (1 /?,55)-bicyclo [3.2.0] heptenone 4. The key strategic feature 
is the use of a Prins-pinacol rearrangement to assemble, with 
complete stereocontrol, the angular tetracyclic core of the alkaloid 
targets. 
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